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VARIATIUNAL FORHULATIONS OF CERTAIN PROBLEM OF THE THEORY 
OF THE FLOW OF RIGID-PLASTIC MEDIA* 

G.A. SBREGIN 

The mathematical content of variational problems of the mechanics of rigid- 
plastic media reduces to minimizing convex functionals in non-reflexive 
spaces of solenoidal vector fields. Different formulations are presented 
in /l/. Problems are examined there in which discontinuous velocity fields 
occur. The initial functional is undetermined in such fields. In this 
connection, the problem isposedof constructing that extension of the 
original set of kinematically allowable velocity fields as would contain 
all their possible discontinuities allowed by the mechanics of rigidly 
plastic media, and of continuing the original functional into the extension 
obtained. This problem is solved in this paper for the case when the 
velocity field is given on the whole surface of the rigid-plastic body. 

1. We consider the bounded domain S2 C Rn (n = 2,s) whose boundary I? satisfies the 
Lipschits condition. The classical variational problem on the stationary flow of a rigid- 
plastic medium is to seek the velocity field u = (ui) such that 

J (u) = minvJ (u) (1.1) 
Here 

1 8 I* = e@ijr 2eij (v) = Vi.1 f uj. i 
V = {u ED’(Q): div v = OinQ, v = U on I?) 

D'(Q)=(n: jj u Ii,=--& 11 div L' IIL7Lr(p) +~(lED(U)l+lVI)d2<+m) 

u = Vi) is a velocity field given in r, and eD(v) is the deviator of the tensor 
e(u),r>l, i,j=1,2 ,..., n. 

It is known that the space D’(Q) is included continuously in the space of summable 
functions Ln/(n-1) (Q)" and L' (r)" /l, 2/. We shall assume that the vector-function u is a 
trace of the solenoidal field u,, E w,l(p)n on r. 

In general, the variational problem (1.1) has no solution since the set of kinematically 
allowable velocity fields V does not contain velocity fields describing discontinuities of 
the sliding type. In this connection, it is meaningful to give its expanded formulation by 
which the following requirements will be imposed: 

1) The description of the expanded set of kinematically allowable velocity fields V, and 
the expanded functional @ defined on V, in terms of a function of the points: 

2) The value of the functional @ in velocity fields from V will equal the value of the 
functional J in these same fields: 

3) Problem (1.1) and its expansion have identical dual problems; 
4) The magnitude of the lower exact face of the expanded problem equals the magnitude 

of the lower exact face of problem (1.1); 
5) The expanded problem has a solution. 
The third requirement is explained by the fact that the dual problem to (1.1) is always 

solvable and has an explicit mechanical meaning. Obviously, ant variational expansion of 

problem (1.1) must necessarily satisfy these five requirements. 

2. We will now describe the set V, and the functional @. We will examine the space and 
set of symmetric tensor functions 

C = {r = (zij) : ~~~ E P(Q), TD e= L- (t-2)“~“) 
C, = {T e 2 : div t = (Tij,j) E L” (52)“) 

K -= {TF X : 1 To (5) 1 :< JCikic, for almost all z -Z il) 
K, = {t r= K :Tii (5) = 0 foralmostallz E S2) 
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The expansion of the set V has the form 

V, = (a GE L"i(*-r) (Q)* :div u = 0 in 9, 

SUP I (e 0.~01, 4 - tu - uo, div ~1 I6 +ml 
rexnr, 

(E (u), T) = i Eif (8) 7ij do, (EL, divr) = i +%rj, j do 

We note that the set V, contains all possible velocity field discontinuities both within 
the domain B and on its boundary I'. The very definition of this set depends on the boundary 
conditions in problem (1.1) , which are thereby taken into account insofar as this is possible 
for the admissibility of the discontinuities. In particular, it can be shown that the 
projection of the velocity vector on the normal direction to the surface l' satisfies the 
boundary condition in a certain sense. 

We define the functional Cp: V+-bfiR’ as follows: 

Now the expansion of problem Cl.11 consists of seeking the velocity field UE V, such 

that 
Q1 (u) = minv, Q (V) @.if 

We now formulate the fundamental assertions. 

Theorem 1. The following relationships hold: 

vcv+ P.3) 

@ (4 = J (u), VY E V (2.3) 

Theorem 2. The variational problem (2.1) has at least one solution uE V+ such that 

Q, (mf = minv, Qt (u) = iafv J (v) (2.4) 

and a symmetric tensor function a= K 0 2, exists where 

div o = OinB (in the sense of the distributions) (2.5) 

(8 &if, z - 4 - fa - z+,, div (r - of) < 0, V7 E II f) 2, (2.6) 

The assertions in Theorems 1 and 2 correspond to the five requirements presented in 
Sect.1. 

The variational inequality (2.6) expresses the necessary condition for an extremum of 
the functional Qt. All the information about the solution is contained therein, in particular, 
about the nature and parameters of the discontinuity. 
U E v, 

If there is no discontinuity, i.e., 
then it is equivalent to the Drucker postulate written in integral form. 

3. We will now prove the theorems. It can be shown that the vector-functions from. 
Co" (52)" arecompact in the space 

&* (Qf = {YEZP(Q): u = 0 on r) 

Since II - u. EDo"(G), then by using the definition of the generalized divergence of a 
symmetric tensor r, we obtain the following identity: 

(E (u), z) = (E (uo), z) - (tl - uo, div z), VT ~$2, (3.1) 

Taking into account that the vector field u is solenoidal, and also the equality 

J (u) = sup (E (u), z), VU E V 
rsxn% 

we deduce both assertions of Theorem 1 from the identity (3.1). 
In proving Therem 2 we consider a family of convex and bounded sets of the Sobolev space 

W*l NY 
I;,= @E I;: II 0 llw,,Cs)n<mlr m> I( noil,,qo,n 

From standard theorems on saddle points there results the existence of the functions 
u, E t-,, r,E? II, such that 

(e t%J, T) < (s @?n). %J Q (e (4 r&, vr E Ro, r G vv, (3.3) 

have 
Using the above-mentioned imbeddings and selecting a subsequence if necessary, we will 
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U, - u weakly in LW(n-1) (Q)n;~m+ T+(O) - weakly in La (sZpxn 

divu=@inQ,2;EK, 
Psssing to the limit in inequality (3.31, we obtain 

;fp;fJ (vj d (8 (v), r+), Vvf V, = v n wal (nj" 

Applying reasoning customary for duality theory, we arrive at the relationships 

(3.4) 

from which an integral identity for r, follows 

(e (v),r~) = 0,Vv~ (v E W,l (a)": div v = 0 in Q, v = Oon r} 

A function t EL' (a) exists such that /3/ 

(e (4 T+) + (t, div u) = 0, Vu E {v E w,l(Q)Y v 3: 0 on I?} 

and therefore 

ae(tsi,+~+1,)~Knz~,diva=Oina (3.5) 

We consider inequality (3.3) for the function 7~ X n & and we pass to the limit taking 
identity (3.1) into account, We consequently obtain 

(s (s,), r) -(u --uo, divs) Q (s (uofr G) = fs (uoj, o), 'trzEK n z,. (3.6) 

It follows from inequality (3.6) that us V+. 
The following inequality is then obtained from (3.4)-(3.6): 

(e (u& z) - (u - UO. div 2) d (e (u,), ~1 = (8 (rc,), 0) = 

(E tuoj, 0) -(v -uo* diva), VVE V,, z E K n 8, 

We deduce from (3.4) and (3,.7) 

(3.7j 

CD (u) = minv, (D (v) = infv,J (v) = (e (a& a) 

The assertions of Theorem 2 result from (3.51, (3.7) and the inequalities 

infv, @3 (Y) < i&J (u) < infv.J (v) 

4. We give an example of the problem in which there is no continuous solution. The 
purpose of the example is to show that the formal mathematical requirements imposed on the 
variational expansion of the initial problem results is such a formulation as is capable of 
extracting discontinuous solutions thatarecompletely reasonable from a mechanical point of 
view. 

We consider a concentric ring. We set =I = p COI 8, tr = p sin 6, where e ~5 lo, 2~1. P E [R,, ~~1. 
Using polar coordinates we specify boundary conditions of the following kind: 

u = (u,, u,); up = -u,, ~a = 0 for P = RI up=--U,/a, ue=U. for p=R, 

where UO, U. are positive constants, and a = RJR,. 
Satisfying the boundary conditions for u,, at p= RI and p= Rs, for uB at p = Rar and 

the equilibrium equations and relationshipsofthe form 

8 (II) = hisn, h. > 0; fo, - o,f2+ 40,~~' = 4k; (4.0 

we obtain the stress tensor e andtheoelocity field u dependent on the parameter c: 

(4.2) 

Here p is an arbitrary constant and the parameter c varies between zero and k, 
The parameter c is chosen from the condition ue=O for p= RI, which results in the follow- 

ing equation: 
I/k,'-- + J k,'l - c%P = (U&f,) ca (1 - CC-~) 14.3) 

Equation (4.3) is solvable, and moreover uniquely, if the following inequality holds: 
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ti,/uo < a (1 -a-‘)“’ (4.4) 
In this case the velocity field u defined by relations (4.1)-(4.3) will be a classical 

solution of problem (1.1). 
If inequality (4.4) is not satisfied, we can set c=k, in (4.2). It then turns out that 

uB (RI) = (U&x) [V,,U, --a(i -a-+] > 0 (4.5) 

i.e., the boundary condition for p = R, is not satisfied for the function we. Nevertheless, 
we show that the field u is a solution of problem (2.1). To do this, it is sufficient for the 
relationships (2.5) and (2.6) to be satisfied. 

Indeed, it follows from (4.1) that 

(E (u), r - @do, VTE K (4.8) 

By integration by parts we set up the equality 

(e(u),r-~)=(~(l~~),~-~)-(u-~~,di~~(r- +$&J -k*)dP, 

for the smooth tensor functions z~K. 
P=& 

Since r EK and inequality (4.5) is satisfied, then the contour integral is not positive 
in this last equality. Therefore 

(e (u),z - u) > (e (~3, z-u) - (U - u,, div (t-u)) 

Now inequality (2.6) follows from the inequality (4.6). The value of the lower point of 
the face of problems (1.1) and (2.1) is evaluated from the formula 

@(u)=J(u)+k, 5 rtgdl- 

i-R, 

where u is the solution of problem (2.1). 
We finally note that by using (4.2) a solution can be constructed which will satisfy all 

the boundary conditions but the function ue has a jump within the domain. However, such a 
solution is intersected by problem (2.1) since it does not satisfy inequality (2.6). 

5. We will briefly describe the possibility of the practical utilization of the expanded 
variational formulation. 

Direct variational methods for the numerical solution of problem (1.1) require continuous 
approximations of the velocity fields. They can turn out to be inefficient in cases when 
problem (1.1) has no continuous solution. 

When using the expanded formulation, the singularity assumed for the solution can be 
introduced directly into the basis functions of the method. For instance, in the finite 
element method it is sufficient to satisfy the continuity condition for the normal component 
of the velocity vector as it goes from one element to another. It is also sufficient to 
satisfy the boundary conditions forthevelocity field component normal to the boundary. The 
surfaces of discontinuity therefore are approximated by the finite element faces. The real 
location of the discontinuities both within the domain and on its boundary is determined from 
the condition for a minimum of the functional CD. 

The author is grateful to P.P. Mosolov for discussing the results. 
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